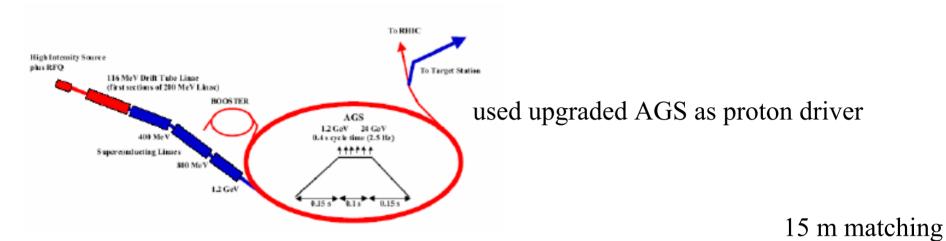


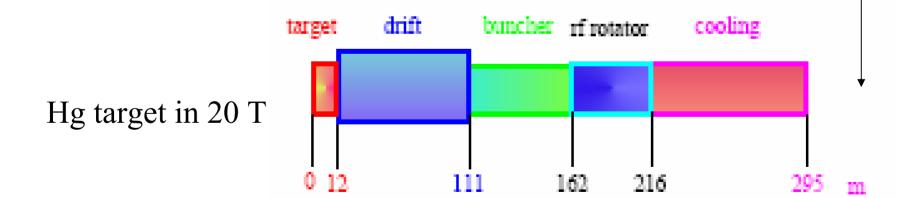
Overview of Neutrino Factory Study 2a

R.C. Fernow BNL

NFMCC Collaboration Meeting IIT

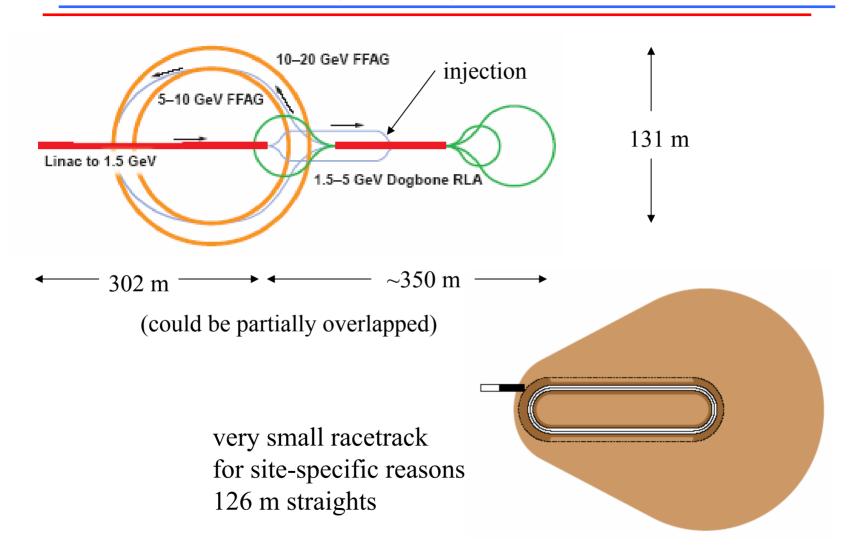
14 March 2006


- Study 2a = design written up in APS Joint Study on the Future of Neutrino Physics (2004)
- this is an update on NFMCC Neutrino Factory Study 2 (2001) contained some BNL site-specific aspects
- new front end design adiabatic RF bunching and phase rotation simplified cooling channel
- new accelerator design with A_T = 30 mm rad dog-bone RLA
 FFAG accelerators
- Study 2b = design written up in PRSTAB 9,011001 (2006)



section

Study 2a Layout (1)



Study 2a Layout (2)

ISS (possible changes in the wind)

- proton beam power: $1 \rightarrow 4 \text{ MW}$
- proton beam energy: $24 \rightarrow 10 \text{ GeV}$
- proton pulse width: $3 \rightarrow 1$ ns
- target: mercury → carbon?
- final muon energy: $20 \rightarrow 30-40 \text{ GeV}$
- storage ring configuration: racetrack → triangle racetrack much larger than Study 2a
 e.g. 496 m straights for 20 50 GeV ring

Study 2a proton driver parameters

 total beam power 	1 MW	
• beam energy	24 GeV	
• cycle time	400 ms	
 protons per fill 	$1\ 10^{14}$	
• bunches per fill	6	
 protons per bunch 	$1.7 \ 10^{13}$	
 time between bunches 	20 ms	(Hg jet)
 bunch length at extraction 	3 ns	

Some downstream issues

- 8 GeV and >1 MW means more μ per second
- carbon target constraints?
- beam loading in rf cavities
- heating in absorbers & windows